Conference on Maternal and Child Health 2012

Gestational diabetes mellitus:

Short term and long term effect on child's health

Tam, Wing Hung
MBChB (CUHK), FRCOG, FHKAM (O&G), Subspecialist Fetal Maternal Medicine
Associate Professor, Department of Obstetrics & Gynaecology
The Chinese University of Hong Kong

Historical background in GDM

- Definition Carbohydrate intolerance first recognized in pregnancy
- History first appeared in the literature in 1950's
- O'Sullivan & Mahan based on +2SD > x̄ glucose
 level at 0, 1, 2, 3 h of a 100 g OGTT
 - Increase in long term outcome
 - But not address to pregnancy outcome

Controversies in GDM

- A physiological change v.s. a disease category
 - Should we treat GDM?
 - What should be the diagnostic criteria?

Landmark studies on GDM

1. HAPO study

2. ACHIOS trial

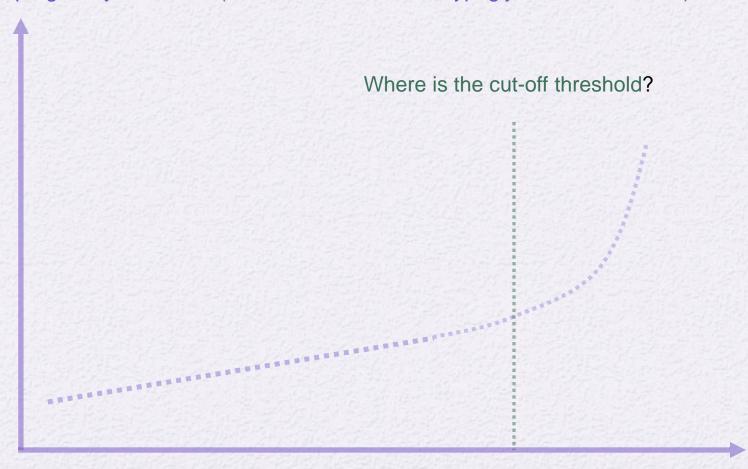
3. Maternal Fetal Medicine Network study

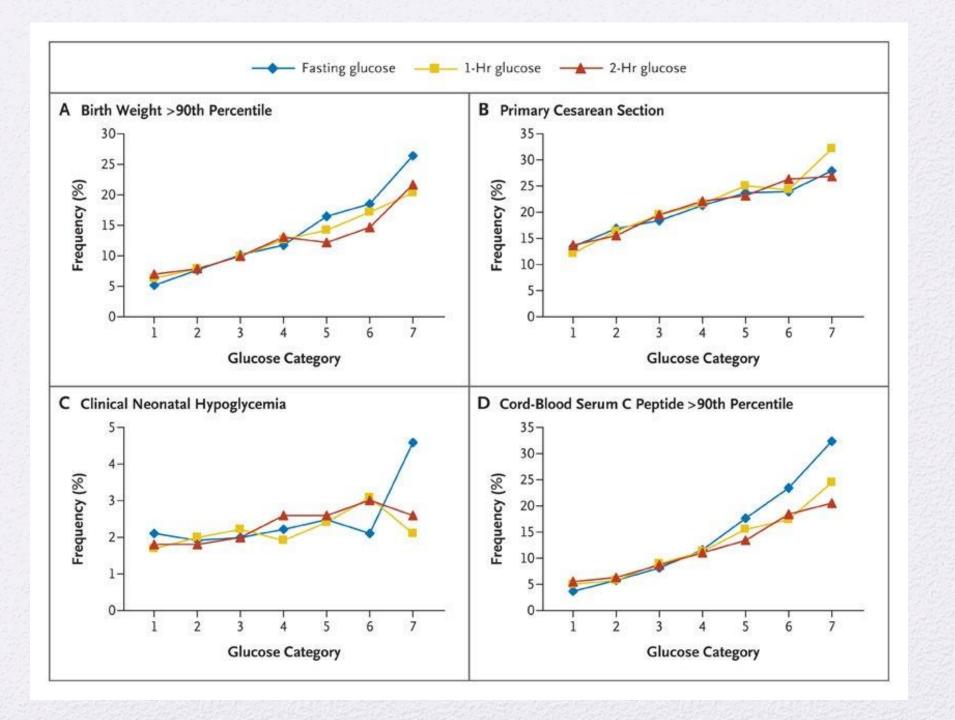
The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

MAY 8, 2008

VOL. 358 NO. 19


Hyperglycemia and Adverse Pregnancy Outcomes


The HAPO Study Cooperative Research Group*

- Multicentre multinational blinded study
 - 25,505 pregnant women
 - 15 centres
 - 9 countries, including HK

Hypothesis: Is there a <u>curvilinear</u> relationship between maternal hyperglycemia & adverse pregnancy outcome?

Adverse pregnancy outcomes (macrosomia, neonatal hypoglycemia, IUD etc ...)

RESEARCH HIGHLIGHTS

DIABETES

Criteria for the diagnosis and treatment of gestational diabetes mellitus—time for a change

andon and co-investigators call for a re-evaluation of current criteria for the diagnosis and treatment of gestational diabetes mellitus. Adverse maternal–fetal outcomes were observed at glucose levels below the current cutoffs for the diagnosis of the disease in their recent research.

Debate rages on the benefits of screening and treatment for gestational diabetes mellitus and on what constitutes appropriate thresholds for the diagnosis of the disease. Although evidence that has amassed in the past few years lends support to the argument that the risk of adverse perinatal outcomes could be reduced by diagnosis and treatment (even for mild gestational diabetes mellitus) questions still remain. Landon *et al.* aimed to inform the debate by examining the relationship between differing degrees of maternal hyperglycemia and perinatal outcomes, including macrosomia.

glycemic status for a composite of adverse perinatal outcomes (including hypoglycemia, perinatal mortality, hyperbilirubinemia, birth trauma and elevated cord blood C-peptide level) and for separate adverse perinatal outcomes, including an increased frequency of babies born large for gestational age. Furthermore, an abnormal glucose challenge test result of ≥7.5 mmol/l significantly increased the risk of the composite perinatal outcome and of babies being born large for gestational age.

Importantly, similar frequencies of some perinatal outcomes were found for the group with one abnormal OGTT result as for the group with untreated gestational diabetes mellitus. These results reinforce previous evidence to suggest that the presence of one abnormal OGTT should be considered in criteria for the diagnosis of the disease.

Next, the researchers looked for trends

Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study

International Association of Diabetes and Pregnancy Study
 Groups (IADPSG) Consensus Panel

New criteria in the diagnosis of GDM

- FPG ≥ 5.1 mmol/L, or
- o 1-h PG ≥ 10 mmol/L, or
- 2-h PG ≥ 8.5 mmol/L

Relationship between maternal glucose/BMI & PET (secondary analysis of HAPO study)

- higher fasting C-peptide is an independent predictor of PET, after adjustment for BMI and fasting glucose
- higher maternal BMI is associated with greater risk for PET, with the odds of PET ↑ ~8-fold from the lowest to highest category of BMI
 - Maternal obesity is a stronger risk factor for PET

Relationship between BMI & pregnancy outcome (secondary analysis of HAPO study)

 Higher maternal BMI, independent of maternal glycaemia, is strongly associated with ↑ frequency of pregnancy complications, in particular those related to excess fetal growth and adiposity

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JUNE 16, 2005

VOL. 352 NO. 24

Effect of Treatment of Gestational Diabetes Mellitus on Pregnancy Outcomes

Caroline A. Crowther, F.R.A.N.Z.C.O.G., Janet E. Hiller, Ph.D., John R. Moss, F.C.H.S.E., Andrew J. McPhee, F.R.A.C.P., William S. Jeffries, F.R.A.C.P., and Jeffrey S. Robinson, F.R.A.N.Z.C.O.G., for the Australian Carbohydrate Intolerance Study in Pregnant Women (ACHOIS) Trial Group*

- Treatment of mild GDM (WHO criteria of IGT)
 - \$\sqrt{\serious perinatal complications: death, shoulder}\$
 dystocia, bone fracture, nerve palsy

ACHOIS trial

Table 2. Primary Clinical Outcomes among the Infants and Their Mothers.*								
Outcome	Intervention Group	Routine- Care Group	Unadjusted Relative Risk (95% CI)	Unadjusted P Value	Adjusted Relative Risk (95% CI)†	Adjusted P Value†	Step-Down Sidak P Value	
	no.	(%)						
Infants								
Total no.	506	524						
Any serious perinatal complication;	7 (1)	23 (4)	0.32 (0.14-0.73)	0.004	0.33 (0.14-0.75)	0.01	0.04	
Death	0	5 (1)		0.06		0.07		
Stillbirth	0	3 (1) §		0.25		0.26		
Neonatal death	0	2 (<1)		0.50		0.50		
Shoulder dystocia¶	7 (1)	16 (3)	0.45 (0.19-1.09)	0.07	0.46 (0.19-1.10)	0.08		
Bone fracture	0	1 (<1)		1.00		0.38		
Nerve palsy	0	3 (1)		0.25		0.11		
Admission to neonatal nursery**	357 (71)	321 (61)	1.15 (1.05–1.26)	0.002	1.13 (1.03–1.23)	0.01	0.04	
Jaundice requiring phototherapy	44 (9)	48 (9)	0.95 (0.64-1.40)	0.79	0.93 (0.63-1.37)	0.72	0.98	
Women								
Total no.	490	510						
Induction of labor††	189 (39)	150 (29)	1.31 (1.10-1.56)	0.002	1.36 (1.15-1.62)	< 0.001	0.003	
Cesarean delivery	152 (31)	164 (32)	0.96 (0.80-1.16)	0.70	0.97 (0.81-1.16)	0.73	0.98	
Elective	72 (15)	61 (12)	1.23 (0.89-1.69)	0.20	1.17 (0.85-1.60)	0.33		
Emergency	80 (16)	103 (20)	0.81 (0.62–1.05)	0.11	0.87 (0.68–1.13)	0.31		

Secondary analysis of ACHOIS trial

- Positive association between maternal fasting hyperglycaemia & risk of shoulder dystocia
- Every 1 mmol/l ↑ in fasting glucose
 - RR 2.09 (95% CI 1.03-4.25)

Cost analysis (ACHIOS trial)

- For every 100 women with a singleton pregnancy & positive OGTT who were offered treatment for mild GDM in addition to routine obstetric care
 - \$53,985 additional direct costs were incurred at the obstetric hospital
 - \$6,521 additional charges were incurred by women and their families
 - 9.7 additional women experienced induction of labour
 - 8.6 more babies were admitted to a neonatal nursery
- 2.2 fewer babies experienced serious perinatal complication &
 1.0 fewer babies experienced perinatal death
 - The incremental cost per additional serious perinatal complication prevented was \$27,503
 - per perinatal death prevented was \$60,506 &
 - per discounted life-year gained was \$2,988

ORIGINAL ARTICLE

N ENGL J MED 361;14 NEJM.ORG OCTOBER 1, 2009

A Multicenter, Randomized Trial of Treatment for Mild Gestational Diabetes

Mark B. Landon, M.D., Catherine Y. Spong, M.D., Elizabeth Thom, Ph.D., Marshall W. Carpenter, M.D., Susan M. Ramin, M.D., Brian Casey, M.D., Ronald J. Wapner, M.D., Michael W. Varner, M.D., Dwight J. Rouse, M.D., John M. Thorp, Jr., M.D., Anthony Sciscione, D.O., Patrick Catalano, M.D., Margaret Harper, M.D., George Saade, M.D., Kristine Y. Lain, M.D., Yoram Sorokin, M.D., Alan M. Peaceman, M.D., Jorge E. Tolosa, M.D., M.S.C.E., and Garland B. Anderson, M.D., for the Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal—Fetal Medicine Units Network*

- Treatment of mild GDM
 - ↓ LGA, macrosomia, shoulder dystocia, CS,

PET & GH

National Institute of Child Health and Human Development Maternal Fetal Medicine (NICHD MFMU Network) study

Outcome Variable	Treatment Group (N = 485)	Control Group (N = 473)	Relative Risk (97% CI)	P Value
Birth weight — g	3302±502.4	3408±589.4		< 0.001
Birth weight >4000 g — no./total no. (%)	28/477 (5.9)	65/454 (14.3)	0.41 (0.26–0.66)	< 0.001
Large for gestational age — no./total no. (%)†	34/477 (7.1)	66/454 (14.5)	0.49 (0.32-0.76)	< 0.001
Fat mass — g	427.0±197.9	464.3±222.3		0.003
Preterm delivery — no./total no. (%)‡	45/477 (9.4)	53/455 (11.6)	0.81 (0.53-1.23)	0.27
Small for gestational age — no./total no. (%)∫	36/477 (7.5)	29/455 (6.4)	1.18 (0.70–1.99)	0.49
Admission to NICU — no./total no. (%)	43/477 (9.0)	53/455 (11.6)	0.77 (0.51–1.18)	0.19
Intravenous glucose treatment — no./total no. (%)	25/475 (5.3)	31/455 (6.8)	0.77 (0.44–1.36)	0.32
Respiratory distress syndrome — no./total no. (%)	9/477 (1.9)	13/455 (2.9)	0.66 (0.26–1.67)	0.33

National Institute of Child Health and Human Development Maternal Fetal Medicine (NICHD MFMU Network) study

Table 4. Maternal Outcomes.*										
Outcome Variable	Treatment Group (N = 476)	Control Group (N = 455)	Relative Risk (97% CI)	P Value						
Induction of labor — no. (%)	130 (27.3)	122 (26.8)	1.02 (0.81-1.29)	0.86						
Cesarean delivery — no. (%)	128 (26.9)	154 (33.8)	0.79 (0.64-0.99)	0.02						
Shoulder dystocia — no. (%)	7 (1.5)	18 (4.0)	0.37 (0.14-0.97)	0.02						
Preeclampsia — no. (%)	12 (2.5)	25 (5.5)	0.46 (0.22-0.97)	0.02						
Preeclampsia or gestational hypertension — no. (%)	41 (8.6)	62 (13.6)	0.63 (0.42-0.96)	0.01						
Body-mass index at delivery†	31.3±5.2	32.3±5.2		< 0.001						
Weight gain — kg‡	2.8±4.5	5.0±3.3		< 0.001						

Summary

- Continuous association between mild hyperglycaemia and adverse pregnancy outcome
- Treatment of GDM in addition to routine antenatal care reduce adverse pregnancy outcome: shoulder dystocia, macrosomia, CS, PET, fetal death
- Extra cost to prevent one case of serious perinatal complication and perinatal death
 - prevent 1 serious perinatal complication: HK\$ 220,000
 - prevent 1 perinatal death: HK\$ 484,000

Effect of GDM on children offspring

1. International study

Offspring of mothers who had DM in pregnancy

Pima Inidians:

 Offspring born to mothers who had type 2 DM during pregnancy has higher risk of developing DM than to those mothers who developed it after the index pregnancy

> Pettit et al. Diabetes 1988 Dabelea et al. Diabetes 2000 Dabelea & Pettit. J Ped Endocrin Metab 2001

 Prevalence of adolescent obesity – higher in offspring exposed in utero to maternal DM as compared to offspring of non-DM mother

Pettit et al. N Engl J Med1983

↑ DM susceptibility (offspring of GDM mother)

- Retrospective study design
- Absence of a control group

Persson et al. Acta Paediatr Scand 1984 Dorner et al. Exp Clin Endocrinol 1987 Van Assche et al. Baillieres Clin Obstet Gynaecol 1991 Plagemann et al. Diabetologia 1997 Harder et al. Diabetes Care 2000

↑ Metabolic syndrome risk if born LGA

- Metabolic syndrome
 - 3 x at the age of 7
 - 4 x at the age of 9

(compared to AGA at birth)

Obesity at 11 of age – strong predictor of insulin resistance

Effect of GDM on children offspring

2. Local study

Glucose Intolerance and Cardiometabolic Risk in Children Exposed to Maternal Gestational Diabetes Mellitus in Utero

Wing Hung Tam, MBChBa, Ronald Ching Wan Ma, MRCPb, Xilin Yang, PhDb, Gary Tin Choi Ko, MDc, Peter Chun Yip Tong, PhDb, Clive Stewart Cockram, MDb, Daljit Singh Sahota, PhDa, Michael Scott Rogers, MBChB, MDa, Juliana Chung Ngor Chan, MDb

	At 8 years of age	NGT (n=101)	Gestational diabetes (n=63)	р
Body wei	ght at the follow-up (kg)*	28.2 (0.7)	28.1 (0.9)	0.92
Waist circ	cumference (cm)*	56.1(0.7)	56.9 (0.9)	0.51
Body mass index (BMI) (kg/m²)*		16.2 (0.3)	16.2 (0.4)	0.86
Obesity	Waist circumference ≥85 percentile BMI ≥ 85 percentile	24 (23.3) 26 (25.5)	14 (22.2) 19 (30.2)	0.87 0.51
Systolic blood pressure (mmHg)*		88 (0.9)	94 (1.2)	<0.001
Diastolic I	blood pressure (mmHg)*	57 (0.6)	62 (0.8)	<0.001

Glucose Intolerance and Cardiometabolic Risk in Children Exposed to Maternal Gestational Diabetes Mellitus in Utero

Wing Hung Tam, MBChBa, Ronald Ching Wan Ma, MRCPb, Xilin Yang, PhDb, Gary Tin Choi Ko, MDc, Peter Chun Yip Tong, PhDb, Clive Stewart Cockram, MDb, Daljit Singh Sahota, PhDa, Michael Scott Rogers, MBChB, MDa, Juliana Chung Ngor Chan, MDb

At 8 years of a	age	NGT (n=101)	Gestational diabetes (n=63)	р
	IFG	2 (2)	1 (1.6)	
Children's glycemic status	IGT	1 (1)	1 (1.6)	0.86
	DM	1 (1)	0	
Fasting plasma glucose (mmol/L) *		4.7 (0.04)	4.7 (0.06)	0.78
2hr-plasma glucose (mmol/L)	2hr-plasma glucose (mmol/L) *		5.4 (0.12)	0.29
HDL-C (mmol/L)*	HDL-C (mmol/L)*		1.58 (0.04)	0.019
LDL-C (mmol/L)*		2.5 (0.08)	2.7 (0.1)	0.08
Triglyceride (mmol/L)*		0.92 (0.04)	0.83 (0.06)	0.27
Total cholesterol (mmol/L)*		4.6 (0.08)	4.7 (0.1)	0.62

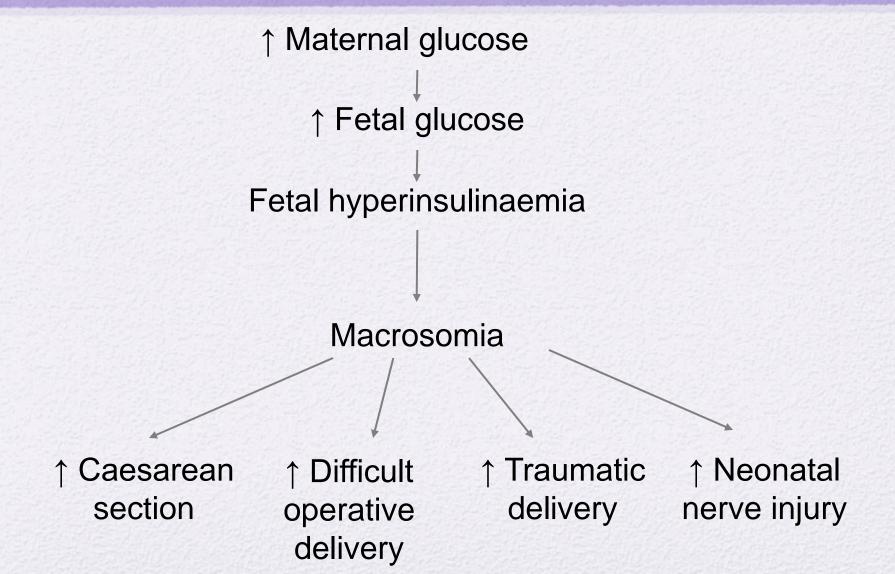
Multivariate logistic regression

		Abnormal glucose tolerance in the offspring	Odds ratio (95% CI)
Cord blood insulin level	≤ 90th percentile > 90th percentile	3 (3.1 %) 2 (20 %)	8.9 (1.08-72.7)
Maternal gestational diabetes status	NGT GDM/GIGT	4 (4.0 %) 2 (3.2%)	0.36 (0.03-3.8)
Macrosomia at birth	< 4 kg ≥ 4 kg	5 (3.2 %) 1 (11.1%)	6.12 (0.21-182)
Children's waist circumference at follow up	≥ 85th percentile < 85th percentile	5 (3.9 %) 1 (2.7%)	1.4 (0.14-14.3)
Mothers' glycaemic status at follow up	Normal IGR/DM	4 (3.3 %) 2 (5.6%)	0.49 (0.02-10.3)

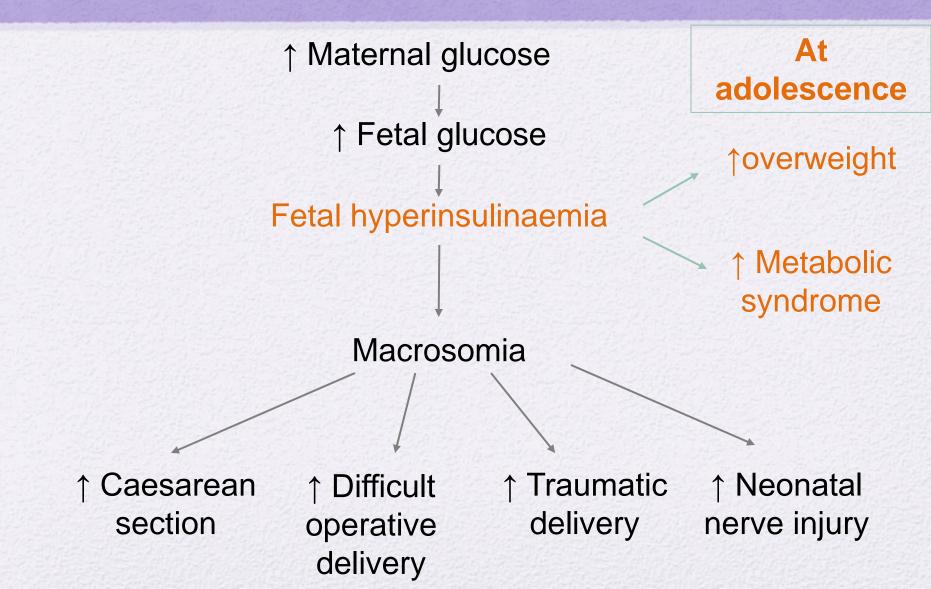
BRIEF REPORT

Glucose Intolerance and Cardiometabolic Risk in Adolescents Exposed to Maternal Gestational Diabetes

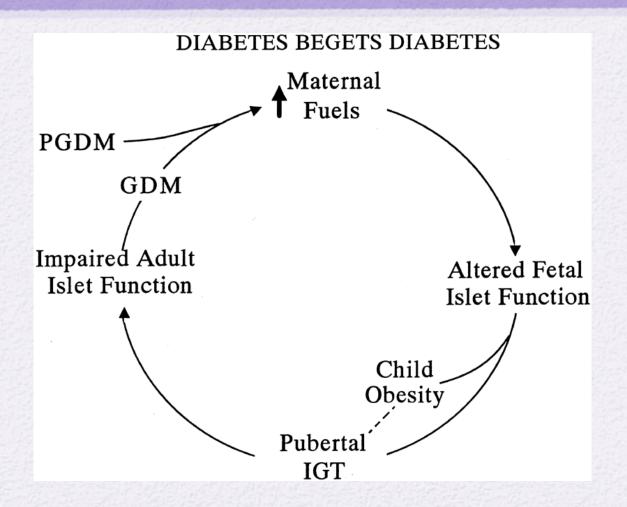
A 15-year follow-up study


Wing Hung Tam, frcog¹ Ronald Ching Wan Ma, mrcp² Xilin Yang, phd² Albert Martin Li, md³ Gary Tin Choi Ko, md⁴

ALICE PIK SHAN KONG, FRCP²
TERENCE TZU HSI LAO, MD¹
MICHAEL HO MING CHAN, FRCPA⁵
CHRISTOPHER WAI KEI LAM, PHD⁵
JULIANA CHUNG NGOR CHAN, MD²


	Hyperins	Odds ratio		
Umbilical cord	C peptide > 90 th percentile	C peptide < 90 th percentile		
Metabolic syndrome	22.2%	2.7%	17.6	
Overweight	44.4%	13.7%	10.8	

Tam et al. Diabetes Care 2010


Complication of GDM in pregnancy

Additional risk of hyperinsulinaemia

Diabetes Begets Diabetes

HAPO – FU study (at 6 year post-delivery)

Subjects: all Chinese HAPO study subjects & their children

Mothers:

- Anthropometric indices & BP, LFT, lipid profile, urinalysis
- 75gram OGTT (Fasting, 2 hour)

Children:

- o Anthropometric indices & BP, LFT, lipid profile, urinalysis
- 5 point OGTT 1.75 g/kg (glucose + insulin levels)

Mother's cardio-metabolic risk at 6 year (HAPO - FU)

Maternal glycaemic status in pro	egnancy	NGT (N=628)	GDM (N=136)	p
Age BMI SBP		37.5 ± 4.6 22.9 ± 3.6 110 ± 11	39.5 ± 4.4 24.0 ± 3.4 û	< 0.001 0.001 0.01
DBP Hypertension		71 ± 9.6 38 (5.8%)	113 ± 11 企 73 ± 9.0 企 10 (7.9%)	0.04 0.36
Glycaemic status at follow up	IFG/IGT DM	59 (9.0%) 2 (0.3%)	35(28%) û 9 (7.2%) û	<0.001
Already diagnosed DM		0	2 (1.6%)	
HDL		1.6 ± 0.4	1.5 ± 0.3 ↓	0.006
TG		0.97 ± 0.76	1.18 ± 0.88 û	0.01
TC		4.8 ± 0.8	5.0 ± 0.8 企	0.02
HDL < 1.03		19 (2.9%)	5 (4.0%)	0.52
TG ≥ 1.7		67 (10.2%)	19 (15.1%)	0.11

Children's cardio-metabolic risk at 6 year(HAPO – FU)

Maternal glycaemic status in pr	egnancy	NGT (N=668)	GDM (N=136)	p
Λαο		7.0 ± 0.5	6.9 ± 0.5	0.04
Age				
Male: Female		353:316	63:73	0.17
BMI		15.0 ± 2.3	15.3 ± 2.3	0.9
SBP		102 ± 8.9	104 ± 9.0 企	0.05
DBP		62 ± 7.8	63 ± 8.2	0.09
Glycaemic status at follow up	IFG/IGT	10 (1.5%)	6 (4.5%) ①	0.01
Ciyoacimo status at ionow up	DM		1 (0.8%) 企	0.01
PG (0 min)		4.6 ± 0.3	4.6 ± 0.5	0.21
PG (15 min)		7.1 ±1.2	7.2 ±1.4	0.27
PG (30 min)		7.5 ±1.5	7.9 ±1.6 û	0.01
PG (60 min)		5.8 ±1.5	6.3 ±1. 7 企	0.003
PG (120 min)		5.3 ±1.0	5.4 ±1.0	0.6

Children's cardio-metabolic risk at 6 year(HAPO – FU)

Children's glycaemic status	S	NGT (N=739)	AGT (N=16)	p
Age		7.0 ± 0.5	6.9 ± 0.4	0.43
% of Male		51.5%	56.2%	0.71
BMI		15.0 ± 2.2	16.6 ± 4.4	0.17
SBP		102 ± 8.6	0.37	
DBP		62 ± 7.8	65 ± 10.3	0.10
Maternal GDM (IADPSG criteria)		119 (16.1%)	6 (37.5%) 企	0.023
Maternal glycaemic status at follow up	IFG/IGT DM	89 (12%) 10 (1.4%)	3 (18.8%) 1 (6.2%)	0.18
Maternal BMI at follow up		23.2 ± 3.5	24.0 ± 4.3	0.35
Maternal age at follow up		37.8 ± 4.6	37.8 ± 4.4	0.94

Effect of maternal hyperglycaemia in pregnancy to children's AGT

UNIANOVA

 Maternal fasting glucose and 1st hour glucose are independent predictor of children's AGT after adjusting maternal AGT, BMI, children's sex & age

Maternal glucose levels at OGTT during pregnancy	Children's odds of having AGT	Р
Fasting glucose ≥ 5 mmol/L	1.6	0.017
1 st h glucose ≥ 10 mmol/L	1.4	0.025
2 nd glucose ≥ 8.5 mmol/L	1.2	0.042

^{*} adjusted for maternal age, BMI, present glycaemic status, children's age & sex

Situation of GDM on Hong Kong

Prevalence of GDM in Hong Kong

Table 1—Frequency of GDM by field center (IADPSG criteria) and participants with elevated FPG, 1-h PG, and 2-h PG

	Participants/	Percent	Percent of GDM diagnosed by each glucose measure		Percent of all women with individual glucose measures ≥ threshold		Percent of women with GDM with individual glucose measures ≥ threshold				
Center*	center	GDM	FPG†	1-h PG‡	2-h PG§	FPG	1-h PG	2-h PG	FPG	1-h PG	2-h PG
HAPO overall	23,957	17.8	55	33	12	9.8	9.7	6.7	55	55	38
Bellflower, CA	1,981	25.5	73	21	6	18.7	12.4	6.9	73	49	27
Singapore, Singapore	1,787	25.1	47	39	14	11.9	16.3	11.7	47	65	47
Cleveland, OH	797	25.0	64	27	10	15.9	12.0	9.4	64	48	38
Manchester, U.K.	2,376	24.3	67	26	7	16.2	13.8	8.5	67	57	35
Bangkok, Thailand	2,499	23.0	24	64	12	5.5	17.4	10.0	24	76	43
Chicago, IL	753	17.3	53	28	19	9.2	8.0	8.0	53	46	46
Belfast, U.K.	1,671	17.1	63	30	7	10.7	7.8	4.2	63	46	25
Toronto, Canada	2,028	15.5	66	24	9	10.3	7.5	5.2	66	48	34
Providence, RI	757	15.5	73	19	9	11.2	5.9	5.3	73	38	34
Newcastle, Australia	668	15.3	64	25	11	9.7	7.2	5.7	64	47	37
Hong Kong, PRC	1,654	14.4	26	45	29	3.8	8.9	9.4	26	62	65
Brisbane, Australia	1,444	12.4	50	31	18	6.2	5.9	4.8	50	47	39
Bridgetown, Barbados	2,093	11.9	74	9	17	8.8	3.8	5.1	74	32	43
Petah-Tiqva, Israel	1,818	10.1	43	45	13	4.3	6.3	3.4	43	62	33
Beersheba, Israel	1,631	9.3	57	28	15	5.3	3.8	2.4	57	41	26

PG, plasma glucose; PRC, People's Republic of China. *Centers listed from highest to lowest unadjusted frequency of GDM. †Includes all with FPG \geq threshold without regard to 1-h and 2-h value. ‡Includes all with FPG \leq threshold and 1-h \geq threshold without regard to 2-h value. §Only 2-h value is \geq threshold.

Lack of consensus

- No unified diagnostic criteria
- No unified screening strategy
 - OGTT once v.s. OGTT twice (mothers with risk factors)
 - Spot glucose as screening test
- No standardized treatment criteria
 - Treatment for all GDM v.s. no treatment for <9 mmol/L (2nd h glucose) or no treatment for <10 mmol/L (2nd h glucose)

Different protocols

Hospitals	75g OGTT cut-off		Remark
	IGT	GDM	
A		FPG ≥5.5 or 2hPG ≥ 8.0	accept also IADPSG criteria if 1hPG available
В		FPG ≥7.0 or 2hPG ≥ 7.8	
С	-	FPG \geq 7.0 or 2hPG \geq 7.8	
D	FPG <7.0 & 2hPG 7.8 - 11.0	FPG ≥7.0 or 2hPG ≥ 11.1	
Е	FPG <7.0 & 2hPG 7.8 - 11.0	FPG ≥7.0 or 2hPG ≥ 11.1	
F	FPG <7.0 & 2hPG 7.8 - 11.0	FPG ≥7.0 or 2hPG ≥ 11.1	
G	FPG ≥ 5.5 & < 7.0 2hPG 7.8 - 11.0	FPG ≥7.0 or 2hPG ≥ 11.1	
н	$FPG \geq 6.0 \text{ or}$ $2hPG \geq 9.0$ (dietary treatment)	FPG ≥7.0 or 2hPG ≥ 11.1	no treatment if 2hPG 8-9 unless presence of risk factors: e.g. PCOS, HT, previous GDM

Scale of problem

- 40,000 local pregnant population/year
- GDM = 14.4% = 5,760
- Risk of DM (0.8%) and pre-diabetic (4.5%)
 = 42 type II DM + 252 IGT/IFG /per year
- Majority would have been missed without diagnosis of mother and antenatal intervention

Summary

- Preliminary HAPO FU data: increase risk of IGT and DM among the offspring
- All were unrecognized
- Majority of the mothers whose DM and IGT also not diagnosed prior to the study FU
- Future work:
 - whether prenatal treatment will reduce the risk?
 - whether postnatal surveillance and lifestyle modification of the children will reduce the risk?
 - the cost-effectiveness of screening and treatment on impact of the postnatal life?

Thank you