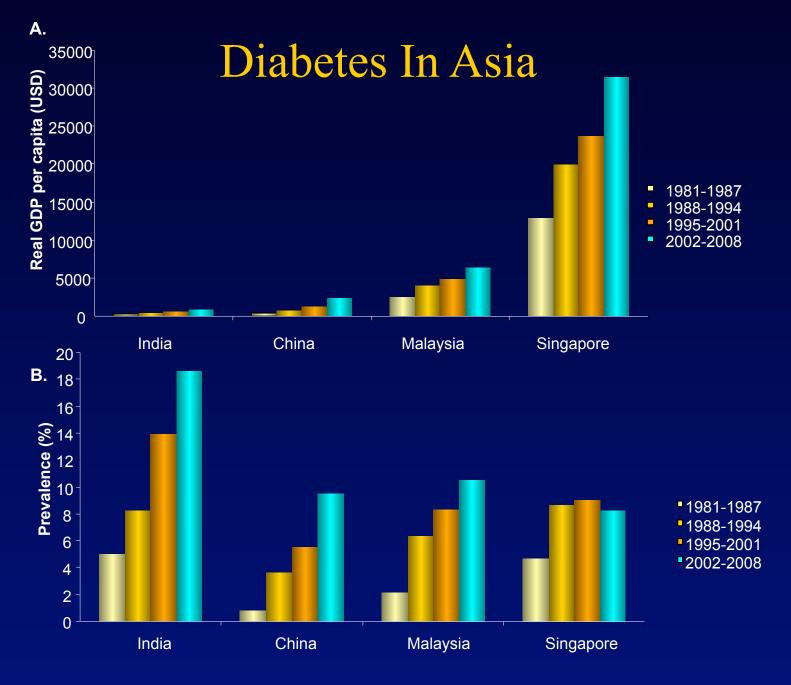
8th September, 2012 Hong Kong

Developmental origins of Type 2 diabetes and obesity - Maternal obesity, GDM and the NCD Epidemic



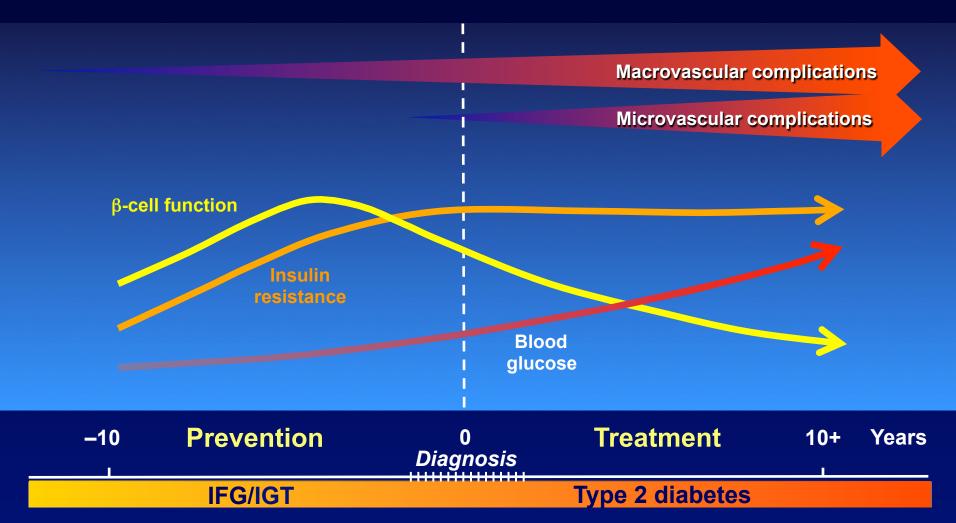
Ronald Ma
Professor

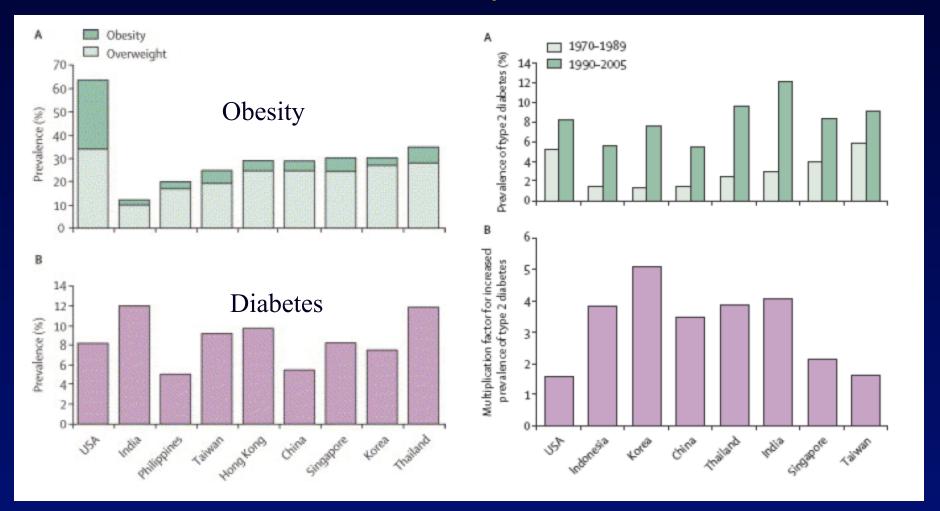
Dept of Medicine & Therapeutics
Chinese University of Hong Kong

Outline

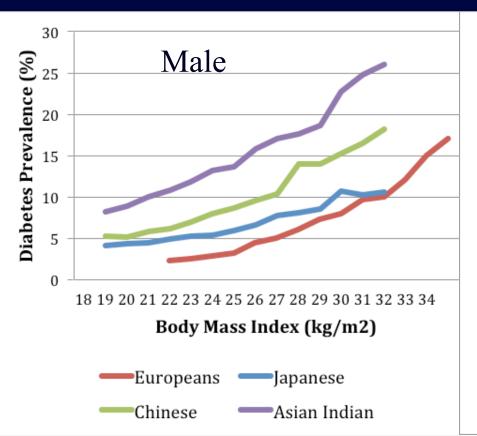
- Epidemiology of Diabetes and Obesity in Asia
- Risk factors for Diabetes
- Role of the intra-uterine environment
- Gestational Diabetes and long-term risks
- Implications for strategies to prevent diabetes and obesity

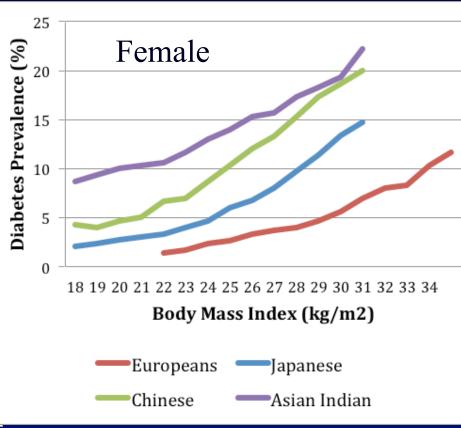
Ramachandran A, Ma RC and Snehalatha DC, Lancet 2010; Jan 30; 375: 408-18


Epidemiology of Diabetes in Hong Kong


- T2 DM affecting 10% of population (in 1990s)
- 10-30% have MetS
- 97% type 2 DM
- Affects 1 in 4 aged > 65
- Among aged 25-34, 2% have DM
- Around 20% of DM patients are aged < 40
 - Risk of CHD ↑14x
 - Risk of CVA ↑30x
 - Nephropathy

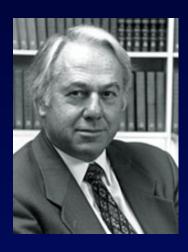
Type 2 diabetes as a Progressive Disease


IFG: impaired fasting glucose IGT: impaired glucose tolerance


Disparity between prevalance of diabetes and obesity in Asia

Young onset, strong FH, central obesity Yoon et al, Lancet 2006 Ramachandran, Ma et al. Lancet 2010

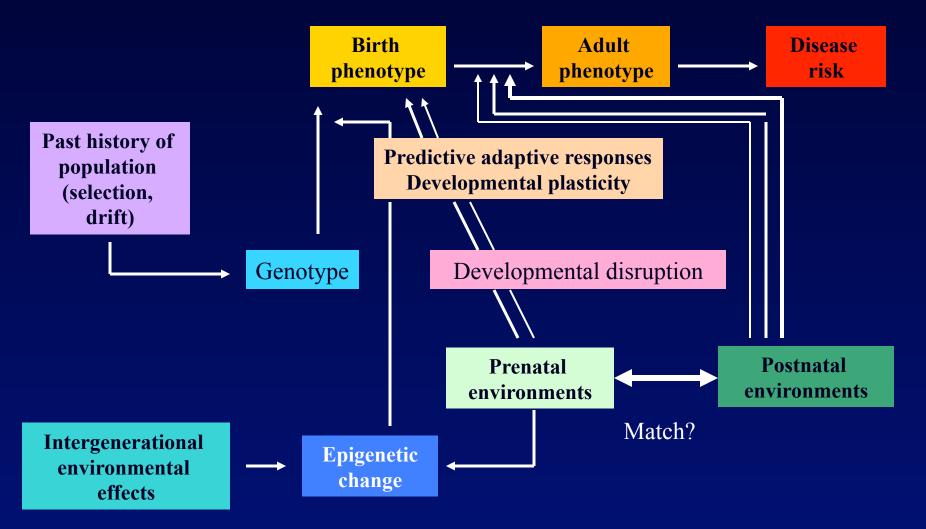
Relationship between BMI and DM prevalence



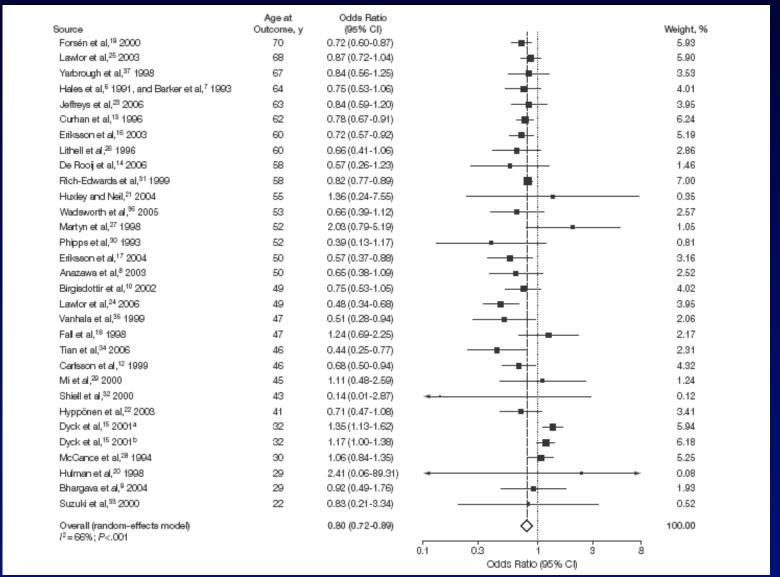
Evidence supporting role of intrauterine environment in DM

- 1) Link between birthweight and DM
- 2) Maternal nutrition and risk of DM
- 3) Transgenerational effects
- 4) Increased maternal transmission of DM
- 5) Animal models of in-utero malnutrition or overnutrition

Early Epidemiological links: The Hertfordshire Cohort

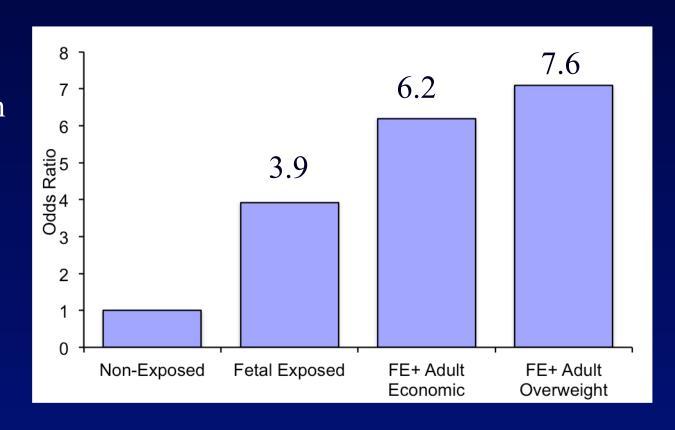

15726 people born 1911-1930

Low birthweight asso. with: Increased mortality from CHD Increased risk of T2 DM, IGT


Weight at Birth.	Weight 1st Year	Food.	No. of Visits.		ndition, ar Health	Visitor.	
	24 ½ Us		ıı.	4			4
yllo	184 Us	B	1. Bu	h.	4.	4.	8
hoved to	Bury Sue 20	Bot.	Nadham . 11	Had Y.	measles y.	pneumor?	ua o e
T.B. abus in	in of neck ope	ned ant.	ontanelle still;	hen 23	yro. abdome	in very le	orge o pu
Kalit	y + n	ormal:	Buch	iland	School	. 6	ard.

Osmond C, et al. BMJ 1993, 307: 1519-24 Hales CN, et al. BMJ 1991; 303: 1019-22

Developmental Origins of Health and Disease (DOHaD)


Birthweight and Type 2 DM risk

Exposure to Chinese famine and hyperglycaemia in adults

7,874 rural adults
From China
National
Nutrition and Health
survey
Examined exposure
to Chinese famine
1959-61

Risk of hyperglycaemia OR 3.92

Transgenerational diabetes

- Early epidemiological studies in the Pima Indian population revealed increased risk of diabetes in offspring of mothers with diabetes (Pettit et al, Diabetes 1988)
- Excess in maternal transmission has been observed in all races and both sexes in a multiethnic cohort (Karter et al, Diabetes Care 1999)
- Risk of DM higher among sibs exposed to intrauterine hyperglycaemia. Sibs exposed to in-utero DM had higher BMI (Dabelea et al, Diabetes 2000), and younger onset of DM (Pettit et al, Diabetes Care 2008)
- Increased risk of DM also seen in offspring of T1 DM (Sobnogwi et al, Lancet 2003)

Diabetes in Hong Kong Crinese

Evidence for familial clustering and parental effects

- Among 2310 Chinese patients with late-onset diabetes (onset >35yrs)
 - 25% of subjects with DM have at least 1 diabetic parent, and irrespective of sex, were more likely to have a diabetic mother than a diabetic father
 - 17% vs 13% of male (p<0.01)
 - 18% vs 9% of female (p<0.01)
- Maternal influence and sex-specific parental effects

Increased cardiometabolic risk in offspring exposed to GDM at 8yrs

	NGT (N=101)	GDM (N=63)	p		
Maternal Characteristics at Pregnancy					
Maternal age at delivery (years)	28.0	28.5	0.064		
% Caesarean delivery	9.9	33.3	<0.001		
% male infants	54.5	41.2	0.10		
Birth weight of infant (gram)	3245	3292	0.50		
Children's Characteristics at Follow-Up					
Mean age (years)	8.4	7.7	<0.001		
Body weight (kg)*	28.2	28.1	0.92		
Systolic BP (mmHg)*	88	94	<0.001		
Diastolic BP (mmHg)*	57	62	<0.001		
HDL-C (mmol/L)*	1.71	1.58	0.019		
Mother with DM at FU	2	6	0.002		

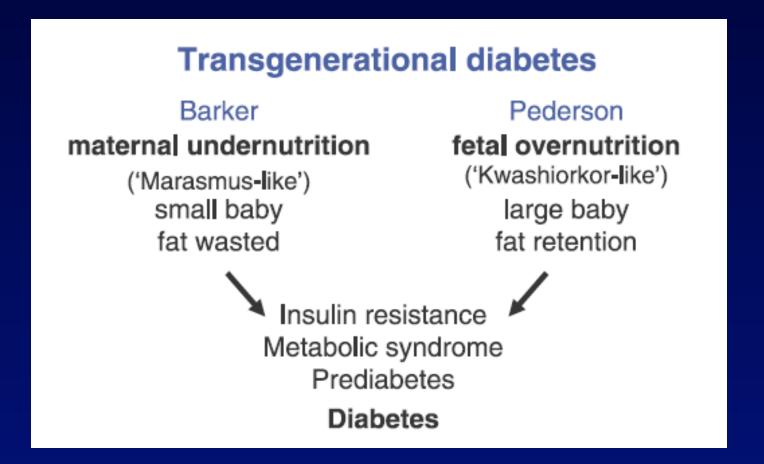
Children's long term risk after exposure to GDM- 15 year follow-up

	Hyperins	Odds ratio	
At 15 year FU	C peptide > 90 th percentile	C peptide < 90 th percentile	
Metabolic syndrome	22.2%	2.7%	17.6
Overweight (BMI ≥ 90 percentile)	44.4%	13.7%	10.8

Metabolic syndrome of children (≥ any 3)

WC ≥ age-sex specific 90th percentile

- 2. FPG ≥5.6 mmol/L
- 3. BP ≥ age-sex specific 90th percentile 4.

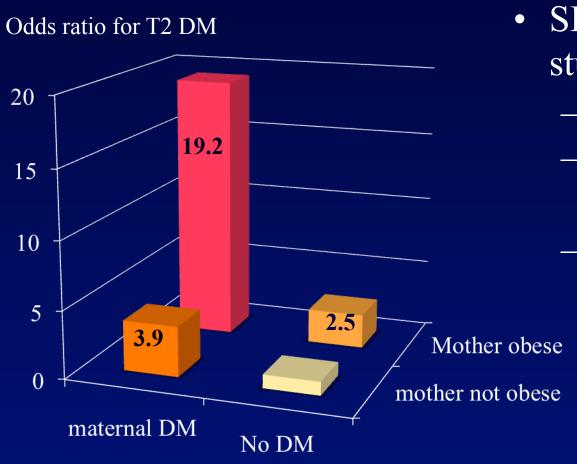

Fasting plasma triglyceride ≥1.7 mmol/L

5. HDL-C < 1.03 mmol/L

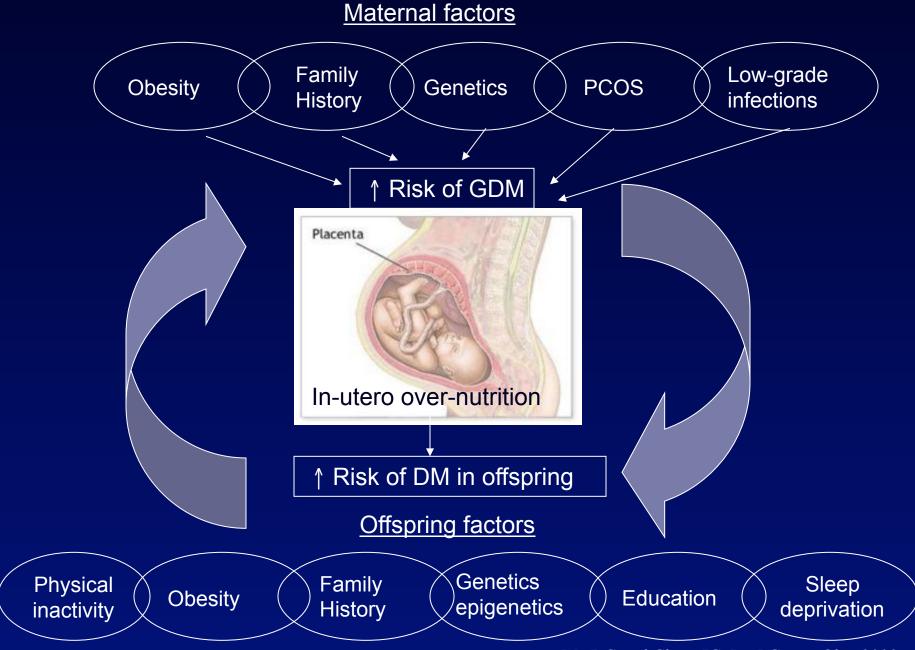
Gradient between maternal glucose and adiposity

	n	>90th percentile†	Model I	Model II
FPG (mmol/l)				
<4.2	3,340	177 (5.3)	1.00	1.00
4.2–4.4	6,270	480 (7.7)	1.48 (1.24–1.77)	1.39 (1.16–1.66)
4.5-4.7	5,186	504 (9.7)	1.92 (1.61–2.30)	1.66 (1.38–1.99)
4.8-4.9	2,287	278 (12.2)	2.47 (2.03–3.01)	2.00 (1.64–2.45)
5.0-5.2	1,556	259 (16.6)	3.57 (2.92–4.37)	2.72 (2.20–3.36)
5.3–5.5	576	119 (20.7)	4.65 (3.62–5.99)	3.37 (2.59–4.38)
≥5.6	174	46 (26.4)	6.42 (4.44–9.29)	4.71 (3.22–6.89)
Continuous‡	19,389	1,863 (9.6)	1.52 (1.45–1.59)	1.39 (1.33–1.47)
1-h Plasma glucose (mmol/l)	•			
≤5.8	3,482	212 (6.1)	1.00	1.00
5.9–7.3	6,258	483 (7.7)	1.29 (1.09-1.52)	1.22 (1.03–1.45)
7.4–8.6	5,007	468 (9.3)	1.59 (1.34–1.88)	1.50 (1.26–1.78)
8.7–9.5	2,324	310 (13.3)	2.37 (1.98–2.85)	2.22 (1.84–2.69)
9.6 – 10.7	1,570	245 (15.6)	2.85 (2.35–3.46)	2.63 (2.14–3.22)
10.8–11.7	536	103 (19.2)	3.67 (2.84-4.74)	3.38 (2.59-4.41)
≥11.8	212	42 (19.8)	3.81 (2.64–5.49)	3.57 (2.46–5.20)
Continuous‡	19,389	1,863 (9.6)	1.44 (1.37–1.51)	1.42 (1.35–1.49)
2-h Plasma glucose (mmol/l)	•		-	
≤ 5.0	3,537	209 (5.9)	1.00	1.00
5.1-6.0	6,135	496 (8.1)	1.40 (1.18–1.66)	1.32 (1.11–1.56)
6.1-6.9	4,948	481 (9.7)	1.71 (1.45–2.03)	1.60 (1.35–1.90)
7.0–7.7	2,556	352 (13.8)	2.54 (2.13–3.04)	2.38 (1.98–2.86)
7.8–8.7	1,444	198 (13.7)	2.53 (2.06–3.11)	2.39 (1.93–2.95)
8.8–9.8	576	90 (15.6)	2.95 (2.26–3.84)	2.80 (2.13–3.69)
≥9.9	193	37 (19.2)	3.78 (2.57–5.55)	3.59 (2.42–5.33)
Continuous‡	19,389	1,863 (9.6)	1.37 (1.31–1.44)	1.36 (1.30–1.43)

Extending the Pederson Hypothesis to milder degrees of in-utero hyperglycaemia

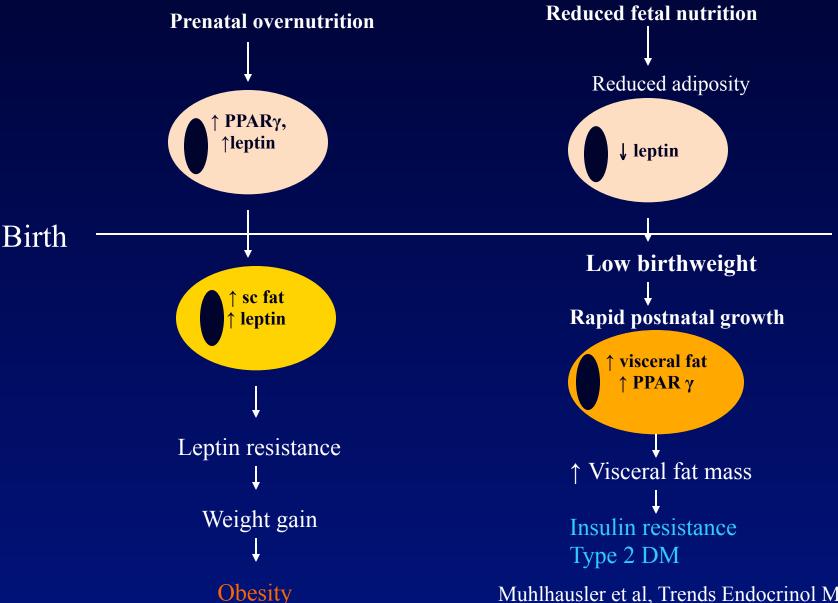


Maternal Obesity and Hyperglycaemia interact to increase risk

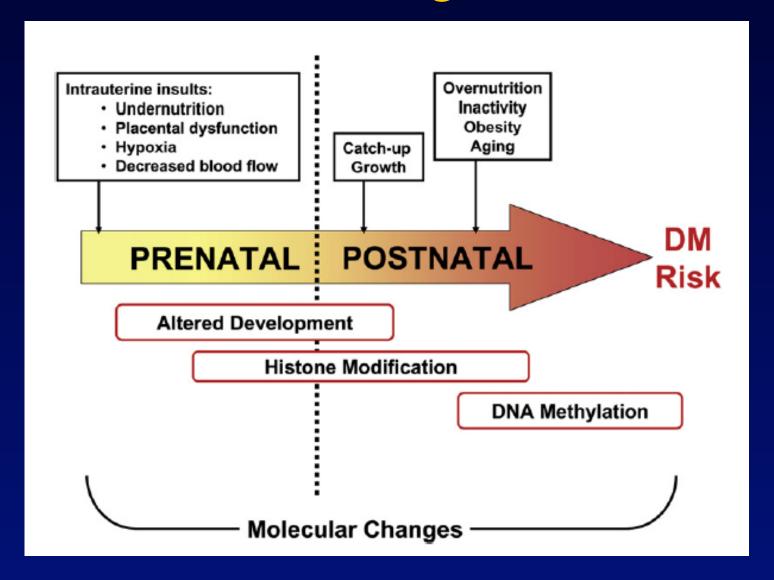

	Glucose			
BMI	Normal	Intermediate	GDM	
ORs for birth weight >90th percentile: plasma glucose and BMI combined				
Normal, underweight	1.00	1.77	2.58	
Overweight	1.75	3.09	4.52	
Obese	2.07	3.66	5.35	
Mean difference in birth weight: plasma glucose and BMI combined (g)				
Normal, underweight	0	90	164	
Overweight	124	214	288	
Obese	174	264	339	

^{*}Adjusted for gestational age at delivery, ethnicity, baby's sex, parity, maternal age, height and gestational age at the OGTT, smoking, alcohol use, hospitalization before delivery, family history of diabetes, and mean arterial pressure. All ORs and differences in birth weight compared with the referent group were significant (P < 0.001).

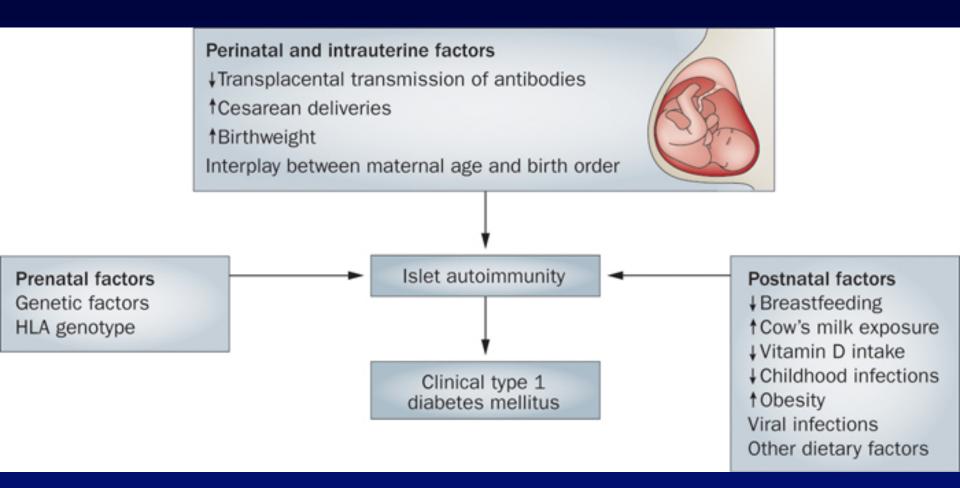
Contribution of maternal hyperglycaemia and obesity


- SEARCH case-control study
 - 79 youths with T2 DM
 - 190 normal youths
 - Overall, 47.2% of T2
 DM in youth attributable to maternal DM or maternal obesity

Animal models of fetal programming of DM


- Rats, guinea pigs, mice, sheep, pigs etc.
- Maternal undernutrition
 - Protein undernutrition
 - Low calorie diet
 - Uterine artery ligation
 - IUGR
- Maternal overnutrition
 - High fat feeding
 - Maternal obesity
 - Maternal diabetes

Intra-uterine nutrition and adipocyte



Muhlhausler et al, Trends Endocrinol Metab 2008

Diabetes Risk Begins In Utero

Prenatal, perinatal and postnatal factors and Type 1 diabetes mellitus

exenatide versus insulin

type 2 diabetes

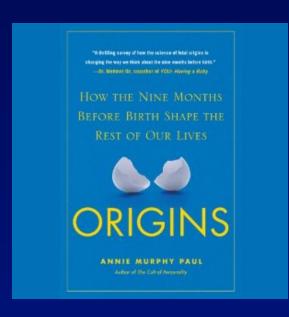
(5) is published weekly, except for the last issue in December which is a double issue, by Elsevier Ltd. (2) 2010 Elsevier Ltd. All rights reserved. Elsevier Ltd's North American agent is Elsevier I

glargine titrated to target for

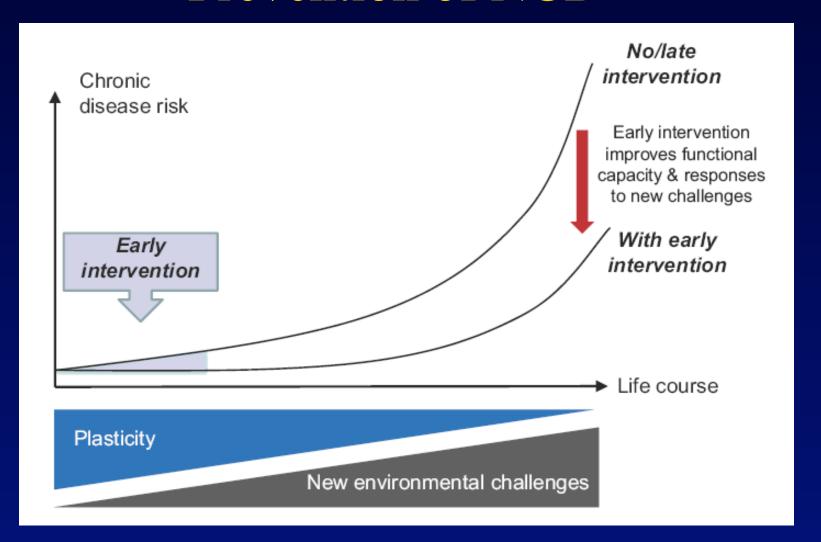
Diabetes mellitus fasting

blood alucose, and risk of

cardiovascular disease


See page 2223

"Medicine might be winning the battle of glucose control, but is losing the war against diabetes"



"A Womb with a View"
-New York Times 27.9.10

Window of opportunity for Prevention of NCD

Pre-pregnancy

- Education on the importance of good glycaemic control to optimize pregnancy outcome
- Screen for diabetes before conception in subjects with risk factors
- Encourage adequate physical activity
- Advocate balanced nutrition

During Pregnancy

- Early screening for pre-existing overt diabetes
- Repeat OGTT screening for GDM at 24-28 weeks if negative during first trimester
- Optimization of blood glucose levels during pregnancy for mothers with GDM or pre-existing diabetes
- Morphology scan at around 20 weeks in case of DM or GDM
- Fetal surveillance for growth parameters for DM or GDM

Peri-partum

- Close monitoring and maintain normoglycaemia
- Consider earlier delivery in cases with poor glycaemic control
- Consider elective Caesarian section for selective cases with macrosomia

After delivery

- For GDM mothers, post-partum oral glucose tolerance test at 6 weeks after delivery to exclude pre-existing DM
- Exclusive breast feeding should be encouraged for at least 6 months (WHO policy)
- Avoid over-nutrition and monitor weight gain for offspring

Long-term prevention

- Active lifestyle modification
- Monitoring of offspring growth

Summary

- Epidemic of diabetes and obesity in Asia
- Emerging importance of intra-uterine environment and epigenetic changes
- Maternal diabetes and obesity are important risk factors for childhood obesity and metabolic disturbances
- Maternal DM, GDM and obesity may perpetuate a vicious cycle of "diabetes begetting diabetes"
- Optimal nutrition during pregnancy and interventions of high-risk women provide opportunity for prevention

